
EXTRA CREDIT 2 — IMPLEMENTING MACHINES

COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

1. Functions and Primitives

In assignment 10, you implemented an interpreter for this programming lan-
guage based on the λ-calculus with primitive constants (numbers and booleans)
and operations:

n ::= 0 | 1 | 2 | 3 | . . .
b ::= true | false
x ::= any symbolic name

M,C ::= n | b | x | C C | λx:T.C | ifC thenC elseC

T ::= num | bool | T → T

The interpreter for assignment 10 was based on the big-step semantics for the
programming language, which is implemented as a recursive function that calls itself
to evaluate any sub-expressions needed to determine the answer to a particular
syntax tree. Part of this implementation involved interpreted functions as first-
class values by representing them as closures, which pair together a function (which
includes both the function parameter and the body of code to run when it’s called)
along with the environment recording the values stored in any free variables that
were in scope at the time the closure was created.

These extra credit exercises ask you to write a more efficient implementation
of this same programming language in terms of an abstract machine, and then to
extend that language with additional features that can be more easily expressed in
the machine.

Recall the CEK machine from class, which abstractly models the steps of a real
machine in terms of two configurations

• Eval⟨C | E | K⟩ or
• Ret⟨V | K⟩

where E stands for an Environment, K stands for a Kontinuation stacK made up
as a sequence of Frames F , and V stands for a Value defined by the following
grammar:

E ::= ϵ | x = V,E

F ::= □ [E]C | V □

K ::= done | F ;K

V ::= n | b | [E]λx.C

Loading an initial configuration Eval⟨C | ϵ | done⟩ lets you evaluate the Code C
to get its answer, which is found in the value of a final configuration of the form

Date: Spring 2023.

1

2 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

Ret⟨V | done⟩. To go from the initial to final configuration, the machine iteratively
applies one of these transition rules, one after the other, until the answer is reached:

Eval⟨C C ′ | E | K⟩ 7→ Eval⟨C | E | □[E]C;K⟩
Eval⟨x | E | K⟩ 7→ Ret⟨V | K⟩ (x = V ∈ E)

Eval⟨n | E | K⟩ 7→ Ret⟨n | K⟩
Eval⟨b | E | K⟩ 7→ Ret⟨b | K⟩

Eval⟨λx.C | E | K⟩ 7→ Ret⟨[E]λx.C | K⟩

Ret⟨V | □ [E]C;K⟩ 7→ Ret⟨C | E | V □;K⟩
Ret⟨V | ([E]λx.C) □;K⟩ 7→ Eval⟨C | x = V,E | K⟩

Extra Credit Exercise 1. Write a non-recursive function that implements the
CEK machine as described above. In particular, your function should

(1) take the source code C to evaluate,
(2) create an initial machine configuration Eval⟨C | ϵ | done⟩ as the starting

state of the machine,
(3) implement the main engine of the machine in a (while) loop, that repeatedly

changes the current state of the machine according to the transition rules
above by
(a) matching current state of the machine against the left-hand side of 7→

in one of the rules, and then
(b) updating the state of the machine ad described by the right-hand side

of 7→ in that same matching rule, and then
(c) repeating the loop again from the top

(4) the (while) loop engine comes to a stop when the current machine state
matches a final configuration Ret⟨V | done⟩. When you reach this state,
end the loop by returning the value V as the final answer of the program.

Hint: The environment E can be represented as an ordinary hash map from
variable names to machine values V , similar to assignment 10. The continuation
K can be represented as a stack/list/array, where done is the empty list, and
pushing a frame onto a continuation F ;K (like V □;K) is represented by adding
a representation of the frame F (implementing V □ and □ [E]C as concrete data
structures apply(V) and arg(E,C)) to the front of the stack.

Extra Credit Exercise 2. Extend your implementation of the CEK machine
from extra credit exercise 1 with primitive operations. These primitive operations
are added to the language similarly to assignment 10:

V ::= · · · | p#n V1 . . . Vi (i < n)

along with an implementation of the function prim(p#n, V1, . . . , Vn) implemented
for every primitive operation p of arity n with n arguments. To start with, you can
implement every one of the primitive operations from assignment 10, and consider
adding additional useful primitive operations on numbers and booleans that you
can think of.

To add primitive operations to your CEK machine, you will need a representation
of partially-applied operations (written above as p#n V1 . . . Vi when the number of

EXTRA CREDIT 2 — IMPLEMENTING MACHINES 3

arguments i is less than p’s expected parameters n). You will also need to imple-
ment the extra transition rules that handle the cases when primitive operations are
partially or fully applied:

Ret⟨V | p#i+1 V1 . . . Vi □;K⟩ 7→ Ret⟨V ′ | K⟩ (prim(p#i+1, V1, . . . , Vi, V) = V ′)

Ret⟨V | p#n V1 . . . Vi □;K⟩ 7→ Ret⟨p#n V1 . . . Vi V | K⟩ (i+ 1 < n)

Finally, define a starting environment which binds a variable in the language to
a value representing each primitive operation you implement in prim. This starting
environment should be used instead of the empty one (ϵ) in the initial configuration
of your machine implemented in extra credit exercise 1. Again, you can look to
assignment 10 for inspiration on who this is done.

2. References and Memory

These exercises ask you to extend your abstract machine with a store, that can
remember the current state of updatable values in dynamic memory.

Extra Credit Exercise 3. Implement stores as a data structure. Stores can be
represented as essentially the same thing as hash maps — with locations used as
keys that are mapped to machine values — but with an extra operation (fresh)
that generates a new location key that is not associated with anything in the store
yet.

Then extend your CEK machine from section 1 with a store S,

S ::= ϵ | l := V, S

by generalizing the two configurations to

• Eval⟨C | E | S | K⟩
• Ret⟨C | S | K⟩

This also means that you will have to begin your initial configuration with the empty
store ϵ, and also you will have to update your implementation of every transition
rule to expect a store S on the left-hand side which is copied over to a similar store
S on the right-hand side.

Extra Credit Exercise 4. Add additional primitive operations (following extra
credit exercise 2) that allow programs to access and use references into the store.
In particular, you can add three primitive operations:

• ref#1 takes one argument (which could be any value), allocates an empty
reference cell in a fresh location in the current store, copes its argument
into that location, and returns the address of the location.

• read#1 takes one argument (which must be a location), and reads the
value currently stored at that location in the store, and returns it.

• write#2 takes two arguments (the first must be a location, and the second
can be any value), and overwrites the store so that the location given by
the first argument now contains the value of the second argument.

More formally, these three operations can be implemented by extending the prim
function (which says what to do for each primitive operation) by taking the current
state of the store as an argument, returning a (potentially) new state of the store
as a result along with the value, and adding these additional cases for the stateful

4 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

operations above:

prim(ref#1, S, V) = l, (l := V, S) (l fresh in S)

prim(read#1, S, l) = V, S (l := V ∈ S)

prim(write#2, S, l, V) = V, (l := V, S)

All other primitive operations from before in extra credit exercise 2 should be
generalized so that they do not interact with the store S (they return the same
store that they were given, and the value they return is the same no matter what
is in the store). For example,

prim(plus#2, S, n1, n2) = (n1 + n2), S

To handle primitive operations that might refer to, or modify, the store, you will
also need to generalize the transition rule implementing the case where a primitive
operation is run, following this specification:

Ret⟨V | S | p#i+1 V1 . . . Vi □;K⟩ 7→ Ret⟨V ′ | S′ | K⟩ (prim(p#i+1, S, V1, . . . , Vi, V) = V ′, S′)

Note that the only change for partially applying a primitive operation is to carry the
current state of the store from the left-to-right-hand sides of the rule, but otherwise
doesn’t change.

3. Control and Recovery

These exercises ask you to implement control structures that let you traverse
or remember the continuation stack. In the case where you did not implement the
store component of the machine yet from section 2, you can ignore the S component
in the following descriptions.

Extra Credit Exercise 5. Extend your language of source programs to allow for
throwing and catching exceptions. This involves adding the new cases for expres-
sions and continuation frames in the grammar of syntax:

M,C ::= · · · | throwT C | tryC catch (T x) C

F ::= · · · | throwT □ | try□ catch (T x) [E]C

It also involves adding the new form of machine configuration

Throw⟨T | V | S | K⟩
for throwing the exceptional value V of type T up the stack K.

The extra transitions you will have to implement in your machine interpreter
should follow these specification rules:

Eval⟨throwT C | E | S | K⟩ 7→ Eval⟨C | E | S | throwT □;K⟩
Eval⟨tryC catch (T x) C ′ | E | S | K⟩ 7→ Eval⟨C | E | S | try□ catch (T x) [E]C ′;K⟩

Ret⟨V | S | throwT □;K⟩ 7→ Throw⟨T | V | S | K⟩
Ret⟨V | S | try□ catch (T x) [E]C;K⟩ 7→ Ret⟨V | S | K⟩

Throw⟨T | V | S | try□ catch (T x) [E]C;K⟩ 7→ Eval⟨C | x = V,E | S | K⟩
Throw⟨T | V | S | try□ catch (T ′ x) [E]C;K⟩ 7→ Throw⟨T | V | S | K⟩ (T ̸= T ′)

Throw⟨T | V | S | F ;K⟩ 7→ Throw⟨T | V | S | K⟩ (otherwise)

EXTRA CREDIT 2 — IMPLEMENTING MACHINES 5

Extra Credit Exercise 6. Extend your language with first-class continuations
captured by the primitive operation call/cc. This involves extending the syntax
of values to include captured continuations:

V ::= · · · | contK
that act like functions. When applied to an argument, continuations should take
over the current call stack according to this following specification rule:

Ret⟨V | S | contK ′ □;K⟩ 7→ Ret⟨V | S | K ′⟩
To generate one of these first-class continuation values, add a new primitive

operation (of arity 1) named call/cc which takes a snapshot of the current state
of the continuation stack K and stores it inside of an immutable value contK. To
do so, you can further extend the rule for running primitive operations to also be
given a reference to the call stack like so:

Ret⟨V | S | p#i+1 V1 . . . Vi □;K⟩ 7→ Ret⟨V ′ | S′ | K ′⟩
(prim(p#i+1, S,K, V1, . . . , Vi, V) = V ′, S′,K ′)

That way, the primitive call/cc operator can be implemented according to this
specification

prim(call/cc#1, S,K, V) = (contK), S, (V □;K)

so that the generated contK which copies the current continuation stack is passed
as an argument to the function V . For example, evaluating code plus 1 (call/cc(λk.k 3))
— in an initially empty continuation and an initial environment where plus is
bound to a primitive operation plus#2 and call/cc is bound to call/cc#1 de-
scribed above — should eventually call the function λk.k 3 with the argument
cont (plus#2 1 □; done).

Hint: call/cc should remember the current continuation stack in a frozen state.
This means that the call stack stored in the captured continuation should always
do the same thing, no matter how many times its used or how the future call
stack changes. If you are implementing continuation stacks as mutable arrays, be
very careful to make sure that the stack you capture will not be affected by future
modifications of the call stack, for example, by copying the current call stack into
a separate array that will be immutable, and then later copying it back into the
current continuation when it is used.

	1. Functions and Primitives
	2. References and Memory
	3. Control and Recovery

