
EXTRA CREDIT 1 — TYPE INFERENCE

COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

1. Inferring the Type of One Expression

In assignment 8, you implemented a type checker for a language based on the
λ-calculus with numbers, booleans, and if-then-else conditionals. Notably, the al-
gorithm you wrote was a type checker because it expects to receive the syntax tree
of a programs with enough typing annotations added to it so that it will never have
to guess.

For example, the type checker might receive the syntax tree representing the
function λx : boolean. x, where the parameter x has been annotated (say, by
the programmer) with the type boolean. That means that you can immediately
determine that this function has the type boolean → boolean, even though there is
nothing in the body of the function which hints that x should be a boolean instead
of something else, like a number or a string.

If you were not given any type annotations on function parameters, then what
type should you say that the function λx.x has? It receives some value (x) as an
argument, and then just returns it as-is without interacting with it. For all practical
purposes, x could stand for a boolean, or a number, or a string, and nothing would
go “wrong.” The way to write down this more generic description specifying the
type of this function is ∀a. a → a which says that the function can accept an
argument of any type (a), and will return a result of the same type (a) matching
the argument it was given.

These extra credit exercises ask you to generalize the algorithm you completed
in assignment 8 to be able to infer the type of an expression that has absolutely no
typing annotations in it, and to be able to assign the most general type to functions
which can operate over many types of parameters. If you choose, you may imple-
ment your solutions to these exercises in any of the languages we have explicitly
used so far in class (that is, Ruby, Scheme, or Standard ML). Get permission from
the instructor first if you wish to implement your solutions in another language.

Extra Credit Exercise 1. Implement the type inference algorithm discussed in
Concepts in Programming Languages chapter 6.3, also known as Hindley-Milner’s

Date: Spring 2023.

1

2 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

algorithm J, for the same language as in assignment 8, except that function param-
eters are written without any type annotations:

n ::= 0 | 1 | 2 | 3 | . . .
b ::= true | false
x ::= any symbolic identifier name

M ::= n | b | x | M M | λx.M | if M then M else M

a ::= any symbolic identifier name

T ::= a | number | boolean | T → T

where a stands for an unknown type variable. Notice how the x in λx.M has no
type annotation, contrary to assignment 8.

Your type inference algorithm should follow these (partially informal) typing
rules for this part

Γ ::= x1 : T1, x2 : T2, . . . , xn : Tn

Γ ⊢ n : number Γ ⊢ b : boolean

(x : T) ∈ Γ

Γ ⊢ x : T

Γ ⊢ M1 : T1 Γ ⊢ M2 : T2 a = fresh type variable() unify(T1, T2 → a)

Γ ⊢ M1 M2 : a

a = fresh type variable() Γ, x : a ⊢ M : T

Γ ⊢ λx.M : a → T

Γ ⊢ M1 : T1 unify(T1, boolean) Γ ⊢ M2 : T2 Γ ⊢ M3 : T3 unify(T2, T3)

Γ ⊢ if M1 then M2 else M3 : T

For more details, see https://en.wikipedia.org/wiki/HindleyMilner_type_system.
In particular, your approach to implementing this algorithm will need to be able

to accomplish these tasks:

(1) Be able to generate fresh new type variables which have never appeared
before during the same run of the type inference algorithm. This is signaled
by the use of the fresh type variable() operation used in two of the
inference rules above. In your code, every call to fresh type variable()
should return a unique type variable with a new name that it has never
returned before.

(2) Be able to unify two types, signaled by the use of the unify operation used
in two of the inference rules above. Intuitively, unify(T1, T2) is an opera-
tion that may either succeed or fail. If a typing rule requires unify(T1, T2)
as a premise, and unify(T1, T2) fails, then that should raise a type error.
Otherwise, if unify(T1, T2) succeeds, then you should continue type infer-
ence and remember any constraints that might be imposed on type variables
caused by unification. For example:

https://en.wikipedia.org/wiki/Hindley–Milner_type_system

EXTRA CREDIT 1 — TYPE INFERENCE 3

• unify(a, b) with two unknown type variables a and b always succeeds,
and imposes the constraint that the two variables are equal (a = b)
for the remainder of type inference.

• unify(a, T) and unify(T, a) for any other type T also succeed, and
imposes the constraint that a = T .

• unify(number ,number) and unify(boolean, boolean) both succeed, and
impose no additional constraints that need to be remembered. In con-
trast, unify(number , boolean) and symmetrically unify(boolean,number)
always fails, and raises a type error.

• unify(T1 → T2, T
′
1 → T ′

2) succeeds only if both unify(T1, T
′
1) and

unify(T2, T
′
2) succeed, and you need to remember all the constraints

imposed by both unify(T1, T
′
1) and unify(T2, T

′
2) for inferring the type

of the remainder of the expression.
• The function type T1 → T2 always fails to unify with the primitive
types number and boolean.

Note that the order of arguments to unify doesn’t matter: the result of
unify(T1, T2) should be the same as unify(T2, T1), and impose the same
constraints for what type each variable should be equal to.

For help remembering the constraints setting variables equal to more
specific types, consider using the union-find data structure: https://en.

wikipedia.org/wiki/Disjoint-set_data_structure.
(3) After you have finished inferring the type of the entire expression without

raising any Type Errors, you will need to generate the final type by applying
the constraints gathered from unification to plug in more specific types
assigned to initially-unknown type variables. For example, if you started
with the type a → b and found the constraints

a = number b = number → boolean

then you should return the final type number → (number → boolean). If
instead you started with the type a → b and found the constraints

a = b b = number → boolean

then you should return the final type (number → boolean) → (number → boolean).
Any unknown type variables remaining after you plugged in every con-

straint should be explicitly listed with a ∀ that names the generic variables
that will appear in the final return type. So if you started with the type
a → b and found only the constraint

b = a → a

then you should return the final type ∀a. a → (a → a). If instead you
started with the type a → b and found the constraint

a = c → d b = c → e

then you should return the final type ∀c. ∀d. ∀e. (c → d) → (c → e).

2. Referring to Polymorphic Variables

The type system in section 1 does not let you actually take advantage of poly-
morphism in named variables that come in from the outside. For example, you
may begin to infer the type of an expression that refers to a free variable x (defined

https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Disjoint-set_data_structure

4 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

previously and imported from outside of the expression) by assigning a type like
number → number to x in the initial environment, which means that x can only be
used as a function converting a number into another number. Even if you assign
a type like a → a to x in the initial environment, the rule which looks up x’s type
still forces you to assume that x has exactly the type a → a for some fixed a.

Extra Credit Exercise 2. Generalize your type inference algorithm to allow for
free variables in the environment Γ to be assigned polytypes (short for polymorphic
types): that is, types with zero or more generic type variables (introduced by a ∀a
meaning “for all choices of type a”). Environments where variables are assigned
polytypes (P) fit into this grammar:

T ::= a | number | boolean | T → T

P ::= ∀a.P | T
Γ ::= x1 : P1, x2 : P2, . . . , xn : Pn

When looking up a variable that has been assigned a polytype, you must instan-
tiate the generic type variables (introduced by ∀s) with some chosen types T . For
example, if x is assumed to have the polytype ∀a. a → a in the environment, then
you can plug in any type you want, like number , for the a introduced by the ∀, to
say that x also has the specialized type number → number . Later on in the same
expression, you might use x again and instead choose to instantiate a with boolean,
to say that x also has the specialized type boolean → boolean.

In the most general case, you can always instantiate a polytype like ∀a. a → a
by plugging in a currently unknown type b in for a to get the type b → b, and then
figure out what b should have been later based on how it is used. The typing rule
that matches this general case for instantiating a variable with a polymorphic type
is:

(x : ∀a1. ∀a2. . . . ∀an.T) ∈ Γ for 1 ≤ i ≤ n, bi = fresh type variable()

Γ ⊢ x : [b1/a1][b2/a2] . . . [bn/an]T

where you have plugged in fresh new type variables b1, b2, . . . bn for the generic type
variables a1, a2, . . . an used in the polytype ∀a1. ∀a2. . . .∀an.T assigned to x in Γ.
Note that renaming one type variable a with another b inside of T is written [b/a]T ,
and can be implemented as a simple search-and-replace over a monomorphic type
T following these rules:

[b/a]a = b

[b/a]a′ = a′ (if a ̸= a′)

[b/a]number = number

[b/a]boolean = boolean

[b/a](T → T ′) = ([b/a]T) → ([b/a]T ′)

Generalize the type inference algorithm you wrote in extra credit exercise 1 to
use this typing rule for instantiating variables of polymorphic types, instead of the
previous rule in extra credit exercise 1 which assumes x has a monomorphic type.

3. Binding Polymorphic Variables

extra credit exercise 1 is about inferring the (polymorphic) type of one expression,
and extra credit exercise 2 is about referring to variables standing in for polymorphic

EXTRA CREDIT 1 — TYPE INFERENCE 5

values imported from the outside. This section connects these two together, and
extends the language you’ve implemented with the ability to create and define new
polymorphic values within the language.

Extra Credit Exercise 3. Add an explicit let-expression construct to your lan-
guage, which binds a variable name to a value which might have a polymorphic
type. This expression can be written nicely in abstract syntax as this new form in
the grammar of expressions:

M ::= · · · | let x = M in M

And the rule for typing this let-expression is

Γ ⊢ M1 : T1 {a1, a2, . . . , an} = FV (T1)− FV (Γ) Γ, x : ∀a1. ∀a2. . . . ∀an. T1 ⊢ M2 : T2

Γ ⊢ let x = M1 in M2 : T2

where FV (T1) returns the set of free type variables found in a monomorphic type,
defined as:

FV (a) = {a}
FV (number) = {}
FV (boolean) = {}
FV (T1 → T2) = FV (T1) ∪ FV (T2)

To implement this rule, whenever you need to infer the type of the expression
let x = M1 in M2 do the following:

(1) Infer the type of the expression M1 using your type inference algorithm
from extra credit exercises 1 and 2. You may want to introduce an new set
of constraints introduced from inferring M1’s type in order to keep them
separate from the any previous constraints in the next step.

(2) After you have finished inferring the type of M1, plug in all solutions to the
constraints introduced and during this phase of type inference, and abstract
over (with ∀s) all remaining type variables that were generated during the
inference of M1’s type. CAUTION: make sure not to abstract over any
type variables that were generated previously in some other phase of type
inference; those variables may be referred to in the outer Γ and cannot be
generic in the type of M1.

(3) Once you have determined the polymorphic type ∀a1 ∀a2. . . .∀an. T1 for
M1, add the type assignment x : ∀a1 ∀a2. . . . ∀an. T1 to the environment
used to infer the type of M2.

Extra Credit Exercise 4. Regular let-expressions let you introduce names for
polymorphic expressions which refer only to previously-defined values. More inter-
esting are recursive bindings which give a name to code that can refer to previous
definitions as well as itself. During type inference, recursive code might need to
refer to itself while you check its type, but you don’t know what the final type will
be until it’s done. To cut the Gordian knot, you can just start with a placeholder
type that will be filled in as you infer the type of the recursive definition.

Extend the grammar of your language with recursive expression

M ::= · · · | rec x = M in M

6 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

and extend your type inference algorithm to figure out the type of recursive expres-
sions following this typing rule:

a = fresh type variable()

Γ, x : a ⊢ M1 : T1

unify(a, T1)

{b1, b2, . . . , bn} = FV (T1)− FV (Γ)

Γ, x : ∀b1. ∀b2. . . . ∀bn. T1 ⊢ M2 : T2

Γ ⊢ rec x = M1 in M2 : T2

	1. Inferring the Type of One Expression
	2. Referring to Polymorphic Variables
	3. Binding Polymorphic Variables

