ASSIGNMENT 7 - TYPES IN THEORY AND PRACTICE

COMP 3010 - ORGANIZATION OF PROGRAMMING LANGUAGES

1. Type Systems

Recall the grammar of the conditional arithmetic language we have been studying in this class. The two different syntactic types $(A$ and B) in the language's grammar can be merged into this single type of general expression (M) :

$$
\begin{aligned}
n & ::=0|1| 2|3| \ldots \\
b & : \\
M & ::=\underline{n}|\underline{b}| \operatorname{plus}(M, M)|\operatorname{minus}(M, M)| \operatorname{geq} ?(M, M)|\operatorname{if}(M, M, M)| \ldots
\end{aligned}
$$

After the merge, new expressions become syntactically valid, like plus(true, false), which don't have a meaningful interpretation as a program because evaluation doesn't know how to produce an answer! regain our sanity and rule out these sorts of errors, we can use types T to distinguish what results an expression is expected to return, which have only two cases for this simple language:

$$
T::=\text { num | bool }
$$

Here are some of the relevant typing rules that confirm that a particular expression M belongs to the type T, written as $M: T$.

$$
\begin{aligned}
\frac{M_{1}: \text { num }}{\text { plus }\left(M_{1}, M_{2}\right): \text { num }} & \overline{\underline{n}: \text { num }} \overline{\underline{b}: \text { bool }} \\
& \frac{M_{1}: \text { num } M_{2}: \text { num }}{\text { minus }\left(M_{1}, M_{2}\right): \text { num }}
\end{aligned} \frac{M_{1}: \text { num } M_{2}: \text { num }}{\text { geq?(} \left.M_{1}, M_{2}\right): \text { bool }}
$$

Exercise 1. What is the type of if (geq? $(\underline{3}, \underline{5})$, geq? $(\operatorname{minus}(\underline{3}, \underline{5}), \underline{6})$, geq?(plus $(\underline{3}, \underline{5}), \underline{6})) ?$ Show that your choice of type T is correct by drawing a type checking tree following the above rules exactly, so that your tree has the conclusion

$$
\text { if }(\text { geq } ?(\underline{3}, \underline{5}), \text { geq? }(\operatorname{minus}(\underline{3}, \underline{5}), \underline{6}), \text { geq } ?(\operatorname{plus}(\underline{3}, \underline{5}), \underline{6})): T
$$

at the bottom of the tree (plugging in your choice of num or bool in for T).
Hint: For example, the type-checking tree showing geq?(1, minus $(\underline{2}, \underline{1}))$: bool looks like this (notice how the goal geq? $(\underline{1}, \operatorname{minus}(\underline{2}, \underline{1}))$: bool appears exactly as-is on the bottom of the tree):

$$
\overline{\overline{1}: \operatorname{num}} \frac{\overline{\underline{2}: \operatorname{num}} \overline{\underline{1}: \text { num }}}{\text { minus }(\underline{2}, \underline{1}): \text { num }}
$$

[^0]The grammar of the λ-calculus already combines several different types of expressions in the same syntactic group M :

$$
M::=x|M M| \lambda x . M
$$

The types (T) of λ-expression could be primitive types X or a function $T_{1} \rightarrow T_{2}$ which takes T_{1} 's as arguments and returns T_{2} 's as results.

The first challenge in checking the type of λ-expressions is knowing what type of values to expect for the free variables in it. This challenge is solved by using a typing environment $\Gamma=x_{1}: T_{1}, x_{2}: T_{2}, x_{3}: T_{3}, \ldots, x_{n}: T_{n}$ that assigns a specific type to all free variables that might appear in an expression. Here is a definition of the system of checking simple types of λ-calculus expressions (where the empty environment ϵ is often not written, so that $x: T, y: T^{\prime}$ means $\left.(\epsilon, x: T), y: T^{\prime}\right)$

$$
\begin{gathered}
T::=X \mid T \rightarrow T \\
\frac{(x: T) \in \Gamma}{\Gamma \vdash x: T} \quad \Gamma::=\epsilon \mid \Gamma, x: T \\
\end{gathered} \frac{\Gamma \vdash M: T^{\prime} \rightarrow T \quad \Gamma \vdash M^{\prime}: T^{\prime}}{\Gamma \vdash M M^{\prime}: T} \quad \frac{\Gamma, x: T^{\prime} \vdash M: T}{\Gamma \vdash \lambda x \cdot M: T^{\prime} \rightarrow T}
$$

Exercise 2. Use the typing rules for the λ-calculus to check that $(\lambda x \cdot \lambda y .(x(z y)))$ has the type (string \rightarrow num) \rightarrow (num \rightarrow num) whenever the free variable z has the type num \rightarrow string. In other words, draw a type checking tree following the rules above with $z:$ num \rightarrow string $\vdash(\lambda x . \lambda y .(x(z y))):($ string \rightarrow num $) \rightarrow($ num \rightarrow num $)$ as the exact conclusion at the bottom of the tree.

Hint: The typing tree that checks the application $y z$ has the type T_{2} in an environment where y has type $T_{1} \rightarrow T_{2}$ and z has type T_{1} looks like this:

$$
\frac{\left(y: T_{1} \rightarrow T_{2}\right) \in y: T_{1} \rightarrow T_{2}, z: T_{1}}{\frac{y: T_{1} \rightarrow T_{2}, z: T_{1} \vdash y: T_{1} \rightarrow T_{2}}{y: T_{1} \rightarrow T_{2}, z: T_{1} \vdash y z: T_{2}} \quad \frac{\left(z: T_{1}\right) \in y: T_{1} \rightarrow T_{2}, z: T_{1}}{y: T_{1} \rightarrow T_{2}, z: T_{1} \vdash z: T_{1}}}
$$

Exercise 3. For both of the following scenarios, say which form of polymorphism is solved by generics (a.k.a. parametric polymorphism) and which one is solved by subtyping. In both cases, explain why that form of polymorphism helps solve the problem.
(1) You want to write a function that takes two objects and invokes the age method on each of them to decide if the first one is younger (has a smaller age) than the second. You know that the Person class of objects all have a an implementation of the age method which returns a number, but your function should work on other classes of objects that also have an age method.
(2) You want to write a function that takes a list/array of elements and reverses it. You don't need to inspect operate on any of the elements directly, but only copy them into a new list/array where they appear in the opposite order.

2. Types in SML

Exercise 4. Do Concepts In Programming Languages Exercise 6.1 parts on understanding SML types (page 156).

Hint 1: In SML, the arithmetic operations + and $*$ are overloaded and can be applied to different types of numbers (including the whole numbers of type int like 3 and fractional floating-point numbers of type real like 3.5) as long as both
arguments are exactly the same type of number. The result of $\mathrm{x}+\mathrm{y}$ (and similarly $\mathrm{x} * \mathrm{y}$) will be the same type of number as its two arguments x and y . In contrast, the fractional division operation / only applies to fractional floating-point numbers of type real, and gives back a number of the same type real.

Hint 2: Remember that the syntax of an inline function in SML is $f n \mathrm{x}=>\ldots$ (analogous to $\lambda x \ldots$ in the λ-calculus). A function type in SML is written using an ASCII arrow $->$, which is a binary operation that associates to the right, so that ' $\mathrm{a}->$ ('b -> 'c) is the same type as 'a -> 'b -> 'c.

Exercise 5. Do Concepts In Programming Languages Exercise 6.7 on using type inference to help identify bugs (page 159).

Hint: The append function is meant to take two lists as arguments and return a single containing all of the elements from both of them in the same order they appeared in, beginning with the elements of the first list and then ending with all the elements of the second list. For example, append ($[1,2,3,4],[3,4,5,6]$) should be $[1,2,3,4,3,4,5,6]$. As such, the type of append is supposed to be 'a list * 'a list -> 'a list (since the elements in the lists could have any type 'a as long as they are the same).

What is the type of the given append function defined by the code in CIPL Exercise 6.7, why is it not the same as the expected type above, and what does this tell you about what the buggy code does differently compared to what it is supposed to do?
Exercise 6. Do Concepts In Programming Languages Exercise 6.5 on calculating the type of a parse graph (pages $157 \& 158$).

Hint: To calculate the type of the function corresponding to the syntax tree, follow the procedure we used in class:
(1) Annotate every node of the syntax tree with a type.

- Annotate constants (such as the number 2 which always has the type int or the operator + used at the type int -> (int -> int)) with their known type.
- Annotate the place where function parameters and local variables are introduced with a unique type variable (' a, 'b, 'c, etc.). Then, when those same variable names are referred to later, use the same type variable as when they were introduced.
- All other syntax nodes (such as applications and λ s) get annotated with a unique type variable different from all the other type variables you use in the tree.
(2) Start identifying the typing constraints created by each node in the syntax tree, and write those constraints forcing the generic type variables introduced in the previous step to be equal to some more specific type.
- For example, the two main forms of constraints created by function application and abstraction have the shapes (T and T^{\prime} might be different types, but repetitions of T stand for the same type appearing in multiple places):

λ s binding a pair of two parameters (as in this exercise) look like this:

- When you find a syntax node currently has a placeholder type variable (such as 'a) as its type, but one of the above constraints forces the type to be something more specific, then write that constraint as an equation that assigns the more specific type to the placeholder. For example, in

The application constraint above requires that x have a function type written with an arrow with the type of the argument y on the left and the type of the application @ on the right. In other words, this part of the syntax tree forces the following constraint on the type 'a:

$$
' \mathrm{a}=\mathrm{\prime} \mathrm{~b} \rightarrow \mathrm{l}^{\prime} \mathrm{c}
$$

- When you discover a new constraint on a placeholder type variable (like the example above on 'a), you can make your life easier by crossing out that type variable everywhere it appears in the syntax tree and replacing it with the new, more specific type.
(3) There might still be some initial placeholder type variables remaining, even after you have completed step (2) for every node in the syntax tree, and managed to solve all of the constraints forced on type variables. That's okay! Those remaining type variables can be left generic, since the code evidently does not care what specific types they stand for. Leave any such remaining type variables in the type signature of the definition (Hint: the final type signature of the definition will be the type annotating the top of the syntax tree), giving you a polymorphic type for the code.

[^0]: Date: Spring 2023.

