ASSIGNMENT 3 - LAMBDA CALCULUS

```
COMP 3010 - ORGANIZATION OF PROGRAMMING LANGUAGES
```


1. Syntax

Remember that the abstract syntax of the λ-calculus is defined by the grammar

$$
M::=x|M M| \lambda x . M
$$

where x, y, and z stand for identifier names (a.k.a. variables) used inside expressions in the language of the λ-calculus.

Ambiguities in the grammar, where multiple juxtapositions and $\lambda \mathrm{s}$ are mixed, are resolved by these associativity and precedence rules:

$$
\begin{aligned}
& M_{1} M_{2} \ldots M_{n}=\left(\left(M_{1} M_{2}\right) \ldots\right) M_{n} \quad M_{1} \lambda x . M_{2}=M_{1}\left(\lambda x . M_{2}\right) \\
& \lambda x \cdot M_{1} M_{2} \ldots M_{n}=\lambda x .\left(M_{1} M_{2} \ldots M_{n}\right) \quad \lambda x_{1} \cdot \lambda x_{2} \cdot M=\lambda x_{1} \cdot\left(\lambda x_{2} \cdot M\right)
\end{aligned}
$$

In other words, application (written as juxtaposition $M_{1} M_{2}$) associates to the left, abstraction (written as $\lambda x . M$) associates to the right, a λ to the right of an application (a λ argument $\left.M_{1}\left(\lambda x . M_{2}\right)\right)$ has a higher precedence than that application, and an application to the right of a λ (an applied function body $\lambda x .\left(M_{1} M_{2}\right)$) has a higher precedence than the λ.

Exercise 1 (Multiple Choice). Which of the following, fully-parenthesized λ-calculus expressions stand for the same syntax tree as $y \lambda x . x y z$?
(a) $y(\lambda x . x)(y z)$
(b) $((y(\lambda x \cdot x)) y) z$
(c) $y(\lambda x \cdot(x(y z)))$
(d) $y(\lambda x .((x y) z))$

Exercise 2 (Short Answer). Use the above rules of precedence/associativity to draw the syntax tree represented by the fully-parenthesized version of $\lambda x . \lambda y . y z x$

2. Alpha

Exercise 3 (Short Answer). Remember that the set of free variables of an expression M, written as $\mathrm{FV}(M)$, is inductively defined on the syntax of M like so:

$$
\begin{aligned}
\mathrm{FV}(x) & =\{x\} \\
\mathrm{FV}\left(M_{1} M_{2}\right) & =\mathrm{FV}\left(M_{1}\right) \cup \mathrm{FV}\left(M_{2}\right) \\
\mathrm{FV}(\lambda x . M) & =\mathrm{FV}(M)-\{x\}
\end{aligned}
$$

Give the set of free variables found in the expression $(\lambda x . \lambda y . y(\lambda z . x))(\lambda x . z)$:

$$
\operatorname{FV}((\lambda x \cdot \lambda y \cdot y(\lambda z \cdot x))(\lambda x \cdot z))=?
$$

[^0]Exercise 4 (This or That). Remember that the operation which renames y to x in M, written $[y / x] M$, is inductively defined by transforming the syntax of M as:

$$
\begin{array}{rlrl}
{[y / x] x} & =y & & \\
{[y / x] z} & =z & & (\text { if } z \neq x) \\
{[y / x]\left(M_{1} M_{2}\right)} & =\left([y / x] M_{1}\right)\left([y / x] M_{2}\right) & & \\
{[y / x](\lambda x \cdot M)} & =\lambda x \cdot M & & (\text { if } z \neq x \text { and } z \neq y) \\
{[y / x](\lambda z \cdot M)} & =\lambda z \cdot([y / x] M) &
\end{array}
$$

The law of α-equivalence is defined in terms of renaming as:

$$
\lambda x \cdot M={ }_{\alpha} \lambda y \cdot([y / x] M) \quad(\text { if } y \notin \mathrm{FV}(M))
$$

Determine which of the following are valid renamings. In other words, say whether or not each pair of λ-calculus expressions are equal according to α-equivalence.
(1) $\lambda x \cdot(x x)={ }_{\alpha} \lambda y \cdot(y y)$?
(2) $\lambda x .(\lambda x . x)={ }_{\alpha} \lambda y .(\lambda z . z)$?
(3) $\lambda x \cdot(x y)={ }_{\alpha} \lambda y \cdot(y y)$?
(4) $(\lambda x . x) x={ }_{\alpha}(\lambda y . y) x$?
(5) $(\lambda x . x) x={ }_{\alpha}(\lambda y . y) y$?

3. Beta

Exercise 5 (Multiple Choice). Remember that the operation which substitutes M^{\prime} for x in M, written $\left[M^{\prime} / x\right] M$, is inductively defined by transforming the syntax of M like so:

$$
\begin{array}{rlrl}
{\left[M^{\prime} / x\right] x} & =M^{\prime} & & \\
{\left[M^{\prime} / x\right] z} & =z & & (\text { if } z \neq x) \\
{\left[M^{\prime} / x\right]\left(M_{1} M_{2}\right)} & =\left(\left[M^{\prime} / x\right] M_{1}\right)\left(\left[M^{\prime} / x\right] M_{2}\right) & & \\
{\left[M^{\prime} / x\right](\lambda x . M)} & =\lambda x . M & & \left(\text { if } z \neq x \text { and } z \notin \mathrm{FV}\left(M^{\prime}\right)\right) \\
{\left[M^{\prime} / x\right](\lambda z . M)} & =\lambda z \cdot\left(\left[M^{\prime} / x\right] M\right) &
\end{array}
$$

What is the result of the substitution $[(\lambda x . x x) / y](y(\lambda z . y z))$?
(a) $[(\lambda x . x x) / y](y(\lambda z . y z))=(\lambda x . x x)(\lambda z . y z)$
(b) $[(\lambda x \cdot x x) / y](y(\lambda z \cdot y z))=y(\lambda z \cdot(\lambda x \cdot x x) z)$
(c) $[(\lambda x . x x) / y](y(\lambda z . y z))=(\lambda x . x x)(\lambda z \cdot(\lambda x . x x) z)$
(d) $[(\lambda x . x x) / y](y(\lambda z . y z))=(\lambda x . x x)(\lambda z .(\lambda x . x x)(\lambda x . x x))$

Exercise 6 (Multiple Choice). Remember that the law of β-reduction is defined in terms of substitution as:

$$
(\lambda x . M) M^{\prime} \mapsto_{\beta}\left[M^{\prime} / x\right] M
$$

and the call-by-name operational semantics for the λ-calculus is defined by applying the above β-reduction rule inside of these evaluation contexts E defined like so:

$$
E::=\square \left\lvert\, E M \quad \frac{M \mapsto_{\beta} M^{\prime}}{E[M] \mapsto_{\beta} E\left[M^{\prime}\right]}\right.
$$

Which of the following is the result of evaluating the expression

$$
(\lambda x \cdot \lambda y \cdot \lambda z \cdot y x z)(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot x) z
$$

according to the call-by-name operational semantics (as shown above)? In other words, which of the following do you get by applying β-reduction (as shown above) as many times as possible in a sequence like so:

$$
(\lambda x \cdot \lambda y \cdot \lambda z . y \quad x \quad z)(\lambda x \cdot x)(\lambda x \cdot \lambda y \cdot x) z \mapsto M_{1} \mapsto M_{2} \mapsto \cdots \mapsto \text { answer }
$$

(a) $(\lambda x \cdot x)$
(b) $(\lambda x \cdot \lambda y . x)$
(c) $(\lambda y . z)$
(d) z

Exercise 7 (Short Answer). What happens when you evaluate the λ-calculus expression $(\lambda x . x x)(\lambda x . x x)$? by repeatedly applying β-reduction? If β-reduction eventually stops, what final expression is the result? If you think β-reduction does not stop, explain why not?

4. EtA

Exercise 8 (This or That). Remember that the law of η-reduction is defined in terms of free variables like so:

$$
(\lambda x .(M x)) \rightarrow_{\eta} M \quad(\text { if } x \notin \mathrm{FV}(M))
$$

Say which of the following are correct η-reductions (according to the above rule) and which are not.
(1) $\lambda x \cdot x \rightarrow_{\eta} x$
(2) $\lambda y .(x y) \rightarrow_{\eta} x$
(3) $\lambda x \cdot(x x) \rightarrow_{\eta} x$
(4) λx. (($\lambda y . y) x) \rightarrow_{\eta} \lambda y . y$
(5) $\lambda x .((y x) x) \rightarrow_{\eta} y x$

[^0]: Date: Spring 2023.

