
Effective Functional Programming
Pure Functional Programming

Assignment 1
Card Games

Paul Downen

In these exercises, you will learn how to use functional programming to model
the basic parts of a blackjack game.

1 Playing Cards (40 points + 20 extra credit)
Blackjack is a game that uses a standard deck of playing cards. Every playing
card has one of four suits: hearts (♡), diamonds (♢), clubs (♣), or spades (♠).
In addition, each card comes in one of the following ranks:

• An ace (A).

• A numeric card, which has a number between 2 and 10 (inclusive).

• A face card, which has the face of one of the three royalty: king (K), queen
(Q), or jack (J).

Some example playing cards are the ace of spades (A♠), the five of clubs (5♣),
and the jack of hearts (J♡).

Exercise 1.1 (10 points). We can model playing cards using data types in
Haskell. For example, a data type that enumerates all the faces of the Royalty
is defined as

data Royalty = Jack | Queen | King

Define some data types for representing the rest of the playing cards:

1. Define a data type Suit that enumerates the four possible suits (Hearts,
Diamonds, Clubs, Spades).

2. Using Suit and Royalty, define a data type Card with three different
constructors for building individual Cards, one for each of the above three
varieties:

(a) Ace cards have a Suit

1

(b) Numeric cards have a specific number (an Int between 2 and 10) as
well as a Suit, and

(c) Face cards have specific Royalty (signifying either a Jack, Queen, or
King) as well as a Suit.

The associated test suite needs to know how to build values of your Suit
and Card data types to check your answers to the following exercises. So let’s
define some helper functions to do so!

First, define four different top-level constants (hearts, diamonds, clubs,
spades) that stand for each one of your possible Suit values:

hearts, diamonds, clubs, spades :: Suit

Second, define three functions that can build each type of Card value:

ace :: Suit -> Card
numeric :: Int -> Suit -> Card
face :: Royalty -> Suit -> Card

End Exercise 1.1

Bonus Exercise 1.2 (5 extra credit). Constructors of data types take argu-
ments of specific types, which limits what contents they can hold. For example,
if you say that your Ace constructor takes a Suit as an argument, then the type
checker will prevent it taking anything else: rest assured that the contents of an
Ace Card will never hold a String or an Int or a Royal.

However, sometimes this type-based discipline is not enough to express all
the restrictions we have in mind for well-formed values. For example, Numeric
cards (which take an Int) should only ever contain a number value between 2
and 10, but the type checker will allow Numeric to take any Int. As a result,
there may be some Numeric Card values that pass the type-checker, but still
don’t make logical sense in our application.

One solution to this problem is to define a smart constructor which adds
additional run-time checks or operations to prohibit nonsensical values from
being built. For extra credit, make the numeric function from Exercise 1.1 into
a smart constructor by adding a check to make sure that the given number is
one of the possible card values:

• numeric n suit should return a normal Numeric Card containing n and
suit when n is between 2 and 10 (inclusive), otherwise

• numeric n suit should raise an error when n is smaller than 2 or bigger
than 10.

Hint 1.1. The function

error :: String -> a

2

lets you report an error that should never happen at run-time. error message
will immediately stop the program, and print the String message to (hope-
fully) help explain what went wrong. The generic return type a means that
error message can be used in place of any expression, no matter what type of
value its supposed to return, because error message never returns. For exam-
ple, in the case of numeric -10 diamonds, you can use error message to stop
the program in place of returning an invalid Card. End Hint 1.1

End Bonus 1.2

Exercise 1.3 (5 points). Derive an Eq instance for your Suit, Royalty, and
Card data types using the automated deriving mechanism by adding a deriving
clause to these data type definitions. Likewise, automatically derive an Enum
instance for Suit and Royalty by adding the Enum to the list of type classes in
the deriving clause of the Suit and Royalty data type definitions.

The Enum type class informs Haskell how to enumerate through the values
of a type, as used in a list enumeration like [1..10]. End Exercise 1.3

Exercise 1.4 (5 points). A hand of cards can be represented as a list of Cards.
We can give a more informative name to this type by defining this type alias

type Hand = [Card]

Define another type synonym named Deck that is also an aliases for a list of
Cards. End Exercise 1.4

Exercise 1.5 (10 points). The Show type class informs Haskell how to render
the values of a type as Strings using the associated function

show :: Show a => a -> String

We can show the values of a particular type any way we want by manually de-
fine a custom instance of the Show type class. For example, here is a declaration
of Show Royalty with the following instance definition:

instance Show Royalty where
-- show :: Royalty -> String
show Jack = "J"
show Queen = "Q"
show King = "K"

Manually define similar Show instances for the Suit and Card types. First,
define a function

asciiSuit :: Suit -> String

that displays a single letter for each Suit:

• asciiSuit Hearts should be "H"

• asciiSuit Diamonds should be "D"

3

• asciiSuit Clubs should be "C"

• asciiSuit Spades should be "S"

We can then tell Haskell to use this function whenever a Suit is printed by:

instance Show Suit where
-- show :: Suit -> String
show = asciiSuit

Second, define an instance for Show Card which defines how to convert each
card into a String displaying its rank and suit. The string representations of
the three different ranks should be:

• Ace suit = "A" immediately followed by the shown suit.

• Numeric n suit = the string representation of the Int n immediately
followed by the shown suit.

• Face royal suit = the string representation of the Royalty royal im-
mediately followed by the shown suit.

For example, a 10 of spades should be shown as "10S" and a Queen of diamonds
should be shown as "QD". End Exercise 1.5

Bonus Exercise 1.6 (5 extra credit). The unicode codes for characters corre-
sponding to the card suits are (in hexadecimal):

• ♡: 2661

• ♢: 2662

• ♣: 2663

• ♠: 2660

Hexadecimal unicode codes can be used in Haskell strings by escaping them with
\xn, where n is the code. For example, the string "\x2660" corresponds to "♠".

For extra credit, define a function

unicodeSuit :: Suit -> String

that returns the appropriate unicode suit symbol above for each suit value.
Feel free to change the Show Suit instance to use unicodeSuit instead

of asciiSuit so that the 10 of spades is shown as "10♠" and the Queen of
diamonds is shown shown as "Q♢". End Bonus 1.6

Exercise 1.7 (10 points). Sometimes, it’s handy to have a complete list of all
the parts of the playing cards for use in other definitions. Since we already know
how to Enumerate the faces of Royalty (from Exercise 1.3), we can list them all
like so:

4

royals :: [Royalty]
royals = [Jack ..]

The royals uses the enumeration Jack .. to all three faces, starting with Jack
(the first constructor defined in the Royalty enumeration), continuing with Queen
(the next constructor of Royalty) and ending with King (the final constructor.

Define similar lists

suits :: [Suit]
numbers :: [Int]

containing all the Suits, and all the valid Numeric card values between 2 and
10. Use these lists to create a full deck

fullDeck :: Deck

containing all playing cards: an Ace for every Suit, a Numeric card for every
Suit and number between 2 and 10, and a Face card for every Suit and Royalty.
The order of fullDeck does not matter. End Exercise 1.7

Bonus Exercise 1.8 (10 extra credit). Sometimes, a dealer will play with
multiple decks mixed together, to make it more difficult to count cards. Define a
function that returns the combination of multiple decks mixed together (in any
order)

multiDeck :: Int -> Deck

so that multiDeck 0 is empty, multiDeck 1 is fullDeck, multiDeck 2 is a
combination of two fullDecks, and so on. End Bonus 1.8

2 Blackjack Scoring (20 points + 40 extra credit)
2.1 Regular: Simple Scoring (20 points)
In the game of blackjack, each player’s hand is given a numeric score and the
goal is draw cards and achieve the highest score without going over 21. A hand
with a score over 21 is called a “bust”, and is an automatic loss. Otherwise, when
comparing two non-bust hands, the hand with the higher score wins.

Exercise 2.1 (10 points). Simplifying the rules of blackjack, each card can be
assigned the following numeric score value based on its rank:

• Ace = 11

• a Numeric card n = the same n as its number

• any Face card = 10

A card’s suit does not affect its score. For example, both the 7 of spades (7♠)
and 7 of diamonds (7♢) have a score of 7. The Queen of hearts (Q♡) and Queen
of clubs (Q♣) have the same score 10, as does the Jack of spades (J♠).

Define a function

5

cardValue :: Card -> Int

for calculating the numeric score value of a Card according to the above rules.
End Exercise 2.1

Hint 2.1. The cardValue function can pattern match on the shape of the Card
parameter it is given as an input, inspecting the constructor that was used to
build it. Since there are three different constructors of Card values, you can
define cardValue in three different lines: one for Aces, one for Numeric cards,
and one for Face cards. End Hint 2.1

Exercise 2.2 (10 points). Define a function

handValue :: Hand -> Int

for calculating the total score of a Hand by summing up the value of each card
in the hand. For example, the value of an empty hand is 0, the value of a hand
with exactly one card c is cardValue c, the value of a hand with two cards c
and d is cardValue c + cardValue d and so on. End Exercise 2.2

Hint 2.2. Remember, handValue is given a list as an argument, and you can
always pattern-match on a list argument to answer the two main cases of the
function:

1. What happens if handValue is given an empty list []?

2. What happens if handValue is given a non-empty list (c:h) containing a
Card c and the rest of the Hand h?

Alternatively, consider these functions from the standard library:

map :: (a -> b) -> [a] -> [b]
sum :: [Int] -> Int

Can you somehow put these together with your answer in Exercise 2.1 to calculate
the score of an entire Hand? End Hint 2.2

2.2 Bonus: Soft Aces (40 extra credit)
Section 2.2 is entirely optional, and contains an opportunity to earn some extra
credit by going above and beyond the expectations for this assignment. Consider
these bonus exercises only after successfully completing the rest of the assignment.

In the full rules of blackjack, some scores are “soft,” meaning that they can
be lowered to avoid a bust. In particular, an ace is valued at either 11 or 1,
depending on which results in the better, non-bust score. A score which cannot
be lowered any more is “hard.” For example, the hand A♠ 4♡ has the soft score
of 15 by valuing the ace as 11. Drawing an additional card to get the hand 7♣
A♠ 4♡ has the hard score of 12 by valuing the ace as 1, since valuing the ace
as 11 would lead to the bust score 22.

6

Bonus Exercise 2.3 (10 extra credit). Define a Score data type that keeps
separate track of a score’s soft parts (contributed by soft aces, which can be
removed) and hard parts (which are mandatory and cannot be removed).

Define the conversion functions

cardScore :: Card -> Score
scoreValue :: Score -> Int

cardScore calculates the Score for a single Card and scoreValue calculates
the total numeric value (including both the soft and hard parts) of a Score.
Composing these two functions should always do the same thing as cardValue
from Exercise 2.1:

scoreValue (cardScore card) == cardValue card

Define the two checking functions

isSoft, isHard :: Score -> Bool

isSoft takes a Score and returns True when given Score has any soft portion
to it. isHard score is the opposite (isHard score == not (isSoft score)
and vice versa), and returns True when score is completely hard. For example,
the Score from any ace card is always soft

isSoft (cardScore (Ace suit)) == True

In contrast, the Score from any face or numeric card is always hard

isHard (cardScore (Face royal suit)) == True
isHard (cardScore (Numeric n suit)) == True

End Bonus 2.3

Bonus Exercise 2.4 (10 extra credit). The Haskell type classes Semigroup
and Monoid defined as

class Semigroup a where
(<>) :: a -> a -> a

class Semigroup a => Monoid a where
mempty :: a

mconcat :: [a] -> a
mconcat [] = mempty
mconcat (x:xs) = x <> mconcat xs

describe an interface for types with values can be summed together. The binary
operator x <> y represents combining two values of the type a, and mempty
represents the neutral value that does not change the total. The additional
derived method mconcat shows how to sum up any list of values via the Monoid

7

interface.1 Since mconcat has a default definition given inside the Monoid class,
you do not need to define it in a particular instance; leaving out definition of
mconcat will result in using the default definition given above.

An example instance of Monoid is lists, where the neutral element mempty is
the empty list and the binary operator (<>) is list append as follows:

instance Semigroup [a] where
-- (<>) :: [a] -> [a] -> [a]
xs <> ys = xs ++ ys

instance Monoid [a] where
-- mempty :: [a]
mempty = []

Other examples of Semigroup and Monoid instances are numeric sums (where
mempty is 0 and (<>) is addition) and products (where mempty is 1 and (<>) is
multiplication). Many more instances can be found in the Data.Semigroup and
Data.Monoid module from the standard library.

Define a Semigroup and Monoid instance for Score by implementing (<>)
and mempty so they can be automatically summed together with mconcat. In
your definition, the scoreValue of mempty should be 0, and the scoreValue of
two combined scores x <> y should be scoreValue x + scoreValue y.

As a guide, your Semigroup Score and Monoid Score instances should obey
the following equalities

mempty <> x == x
x <> mempty == x
(x <> y) <> z == x <> (y <> z)

for any Scores x, y, and z. In addition, softness should be the dominant trait
when scores are combined. That is to say:

• mempty should be a hard score,

• x <> y should be hard whenever both of x and y are hard, and

• x <> y should be soft whenever one of x or y are soft.

End Bonus 2.4

Bonus Exercise 2.5 (5 extra credit). Define the function

handScore :: Hand -> Score

for calculating the Score of an individual Card and the total Score of a Hand.
Note that the score of an ace should include both a soft part (contributing a
value of 10) and a hard part (contributing a value of 1), whereas all other cards
only have a hard score value.

End Bonus 2.5
1The standard library definition of Monoid also gives a derived method mappend for back-

wards compatibility, which is just another name for the (<>) operator by default.

8

Bonus Exercise 2.6 (5 extra credit). We need to be able to compare two scores,
to determine the winner of a game. In the normal case, when both players have
a numeric score of 21 or less, we can just compare these two numbers to see who
wins. However, a bust score whose value is over 21 counts as an automatic loss,
so it should be considered “less” than a score like 18, even though the numeric
value is technically larger.

First, define a function

isBust :: Score -> Bool

which checks if a score’s value is 22 or greater.
Next, define Eq and Ord instances for Score, taking care to account properly

for any bust score. Your definition for compare should say that:

• any two bust scores are equal (meaning they are tied),

• a bust score is less than (meaning it loses to) any other non-bust score,

• any two non-bust scores are compared on their numeric value.

Your definition for (==) should return True exactly when compare says that the
two scores have an EQ Ordering.
Hint 2.3. See Exercise 3.2 for more information about how the Ord and how to
implement its associated compare function. End Hint 2.3
Hint 2.4. Even though Ord a requires Eq a, you may define compare from Ord
first and then refer to it inside the definition of (==) from Eq. End Hint 2.4

End Bonus 2.6

Bonus Exercise 2.7 (10 extra credit). Define a function

improveScore :: Score -> Score

that “improves” a Score by lowering/eliminating soft scores (from soft aces)
that lead to a bust. improveScore should choose among all the possibilities
with or without the available soft scores and return the “best” score whose
value is closest to 21 without going over. This best Score is either the one with
the highest value (according to scoreValue) that is less than or equal to 21 if
possible, or otherwise the one with the lowest possible score greater than 21.

Calculating the “best” improved score can be a tricky operation to get right.
To help you out, here are some properties of how improveScore should behave:

• A score of 21 or under and a completely hard score cannot be improved.

• A score that isSoft and isBust with a value of 22 or more can be improved
by lowering the value by a multiple of 10. Doing so will either make the
score better (by making it no longer a bust), or will completely harden it
(to the lowest possible option over 21).

• Improvement will never change a score more than once. In other words, it
is idempotent: improveScore (improveScore x) == improveScore x.

9

• If adding an 11-valued ace to a score would result in a value of 21 or less,
then the soft 11 is added. Otherwise, adding an ace to a score already
valued at 11 or more only adds a hard 1 instead.

• In more general terms, combining any two already-improved scores — one
hard and one soft – and improving the sum will either do nothing, or
reduce it by 10. Given any two already-improved scores, improving their
combination will only ever reduce the total value by 0, 10, or 20.

Define a function

betterhandValue :: Hand -> Int

which calculates a (potentially) better value for a hand by

1. calculating the Score of the hand,

2. improving that Score once, and

3. returning the numeric value of the improved Score.

End Bonus 2.7

3 Deck Shuffling (40 points)
Of course, before playing a game, the deck of cards should be shuffled. One
straightforward way to shuffle a deck is to sort the deck based on a random
ordering. For example, consider the following illustration wherein two lists are
rearranged pairwise by sorting:

At first, the purple list of numbers is in some “random” order, whereas the red
list of letters is in order. After sorting the two lists pairwise, the purple numbers
are put into ascending order, which forces the red letters into a “random” order.

10

Exercise 3.1 (5 points). Define a polymorphic data type Indexed i a which a
single constructor that pairs together an item a with an index i. Derive a Show
type class instance for this data type using deriving. End Exercise 3.1

Exercise 3.2 (10 points). The Ord a type class specifies how values of a type a
can be ordered relative to one another. Ord a includes many ordering operations
(<, >, etc.) that are all derivable from the compare function

compare :: Ord a => a -> a -> Ordering

The Ordering type is an enumeration of the values LT (for “less than”), EQ (for
“equal”), and GT (for “greater than”) defined in the standard library as:

data Ordering = LT | EQ | GT

To define an instance of Ord, only the compare function needs to be implemented.
Manually define an Ord (Indexed i a) which depends on Ord i by imple-

menting the compare function for Indexed i a. Only the index part (of type i)
of the Indexed i a value should be considered for the purposes of compareison,
and the item part (of type a) should be completely ignored. Additionally, define
an Eq (Indexed i a) instance by implementing the (==) function in a way
that similarly only compares indexes for equality and ignores the item.

End Exercise 3.2

Exercise 3.3 (10 points). Define the two functions:

addIndexes :: [i] -> [a] -> [Indexed i a]
removeIndexes :: [Indexed i a] -> [a]

addIndexes should return a list of type [Indexed i a] by combining (pair-
wise) the elements of the given list of indices (of type [i]) and list of values (of
type [a]). For example, addIndexes [3,2,1] "abc" should return a list where
'a' is indexed at 3, 'b' is indexed at 2, and 'c' is indexed at 1. Note, if the
two lists passed to addIndexes have different lengths, you should drop the extra
elements from the end of the longer list.

removeIndexes should return a list of type [a] by extracting only the values
of type a from the given list of indexed values (of type [Indexed i a]). The
indices of type i from the input should be discarded. End Exercise 3.3

Hint 3.1. These two functions which are automatically imported by default:

zip :: [a] -> [b] -> [(a, b)]
map :: (a -> b) -> [a] -> [b]

The zip function pairwise combines two lists, and returns the list of pairs. The
map function transforms a list of as to a list of bs by applying the given function
(a -> b) to every element of the given list ([a]).

Can you think of a way to somehow use these functions to make writing
addIndexes and removeIndexes easier? End Hint 3.1

11

Exercise 3.4 (15 points). The above shuffling process can be broken down in
these three steps:

1. combine together each Int and a, pairwise, from the two input lists to
produce a list of type [Indexed Int a],

2. sort the list of type [Indexed Int a] (according to the definition of or-
dering given by Ord (Indexed Int a) from Exercise 3.2) from step 1,
and

3. return a list of as obtained from the items of the list from step 2.

Now, define a shuffling function

shuffle :: [Int] -> [a] -> [a]

that permutes the given list [a] according to the “random” list of indexes [Int].
For example,

shuffle [4, 2, 7, 3, 6, 9] "abcdef" == "bdaecf"

Hint 3.2. The list sorting function

sort :: Ord a => [a] -> [a]

can be found in the standard Data.List module included with GHC. Can you
combine sort with your answers to Exercise 3.3 to define the shuffle function?

End Hint 3.2
End Exercise 3.4

12

	Playing Cards (40 points + 20 extra credit)
	Blackjack Scoring (20 points + 40 extra credit)
	Regular: Simple Scoring (20 points)
	Bonus: Soft Aces (40 extra credit)

	Deck Shuffling (40 points)

