
ASSIGNMENT 9 — MACHINES

COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

1. Call Stacks

Exercise 1. Do Concepts In Programming Languages Exercise 7.2 on tail recursion
and iteration (page 193).

You may write your answer in any language of your choosing from this list:
Standard ML, Ruby, Scheme, Python, or C/C++. No matter what language you
choose to write your answer in, make sure you write a non-recursive program using
a “while” or “for” loop that is equivalent to the function mult given in Exercise 7.2
(that is to say, your non-recursive function should always return the same number
as the recursively-defined mult for any pair of arguments.)

Hint: The tail recursive function mult in Exercise 7.2 can be simplified by re-
moving the special case where a = 1 sharing the constant variable b like so:

fun mult(a, b) =

let fun mult1(a, result) =

if a = 0

then result

else mult1(a-1, result+b)

in

mult1(a, 0)

end;

You may base your answer off of this simplified definition of mult.

Exercise 2. Do Concepts In Programming Languages Exercise 7.8 on static and
dynamic scope (pages 196-197).

Extra Credit Exercise 1. Do Concepts In Programming Languages Exercise 7.11
on λ-calculus and scope (page 198).

Exercise 3. Do Concepts In Programming Languages Exercise 7.12 on function
calls and memory management (pages 198-199).

Extra Credit Exercise 2. Do Concepts In Programming Languages Exercise 7.13
on function returns and memory management (pages 199-200).

Date: Summer 2022.

1

2 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

2. Abstract Machines

Recall this definition of an abstract machine for calculating the answers to arith-
metic problems:

n ::= 0 | 1 | 2 | 3 | . . .
A ::= n | plus(A,A) | minus(A,A) | times(A,A)

K ::= done | F ;K

F ::= plus(□, A) | plus(n,□) | minus(□, A) | minus(n,□) | times(□, A) | times(n,□)

S ::= Eval⟨A | K⟩ | Ret⟨n | K⟩

Eval⟨plus(A1, A2) | K⟩ 7→ Eval⟨A1 | plus(□, A2);K⟩
Eval⟨minus(A1, A2) | K⟩ 7→ Eval⟨A1 | minus(□, A2);K⟩
Eval⟨times(A1, A2) | K⟩ 7→ Eval⟨A1 | times(□, A2);K⟩

Eval⟨n | K⟩ 7→ Ret⟨n | K⟩

Ret⟨n | plus(□, A);K⟩ 7→ Eval⟨A | plus(n,□);K⟩
Ret⟨n | plus(n′,□);K⟩ 7→ Ret⟨n′ + n | K⟩
Ret⟨n | minus(□, A);K⟩ 7→ Eval⟨A | minus(n,□);K⟩
Ret⟨n | minus(n′,□);K⟩ 7→ Ret⟨n′ − n | K⟩ (if n′ ≥ n)

Ret⟨n | times(□, A);K⟩ 7→ Eval⟨A | times(n,□);K⟩
Ret⟨n | times(n′,□);K⟩ 7→ Ret⟨n′ × n | K⟩

Exercise 4. Using the above rules for executing programs in the abstract ma-
chine, show the step-by-step calculating the final state of the machine command
Eval⟨times(2, minus(plus(3, 4), 5)) | done⟩.

Hint: Beginning with the starting machine state (S0) above, keep applying the
machine steps listed above on at a time to transition between states

S0 7→ S1

7→ S2

7→ . . .

7→ Sdone

until you reach a final state Sdone that should look like either Ret⟨n | done⟩ or
Ret⟨b | done⟩. Each machine state has at most one transition rule that could pos-
sibly apply, so you will never have to choose between multiple options.

Recall the Krivine machine for calculating answers to λ-calculus programs (ex-
tended with numbers n ::= 0 | 1 | 2 | . . .):

M ::= n | x | M M | λx.M
Γ ::= ε | x = [Γ]M,Γ

Π ::= done | [Γ]M ; Π

ASSIGNMENT 9 — MACHINES 3

⟨M M ′ | Γ | Π⟩ 7→ ⟨M | Γ | [Γ]M ; Π⟩
⟨λx.M | Γ | [Γ′]M ′; Π⟩ 7→ ⟨M | x = [Γ′]M ′,Γ | Π⟩

⟨x | Γ | Π⟩ 7→ ⟨M ′ | Γ′ | Π⟩ (if (x = [Γ′]M ′) ∈ Γ)

Exercise 5. (a) Show the step-by-step β-reduction in the small-step semantics
of the λ-calculus to simplify the expression

(λx.(λy.(λx.y 30) 20) (λz.x)) 10

down to a final answer of the form of a number n or function λx′.M ′ with
some parameter x′ and some body M ′.

(b) Using the above rules of the Krivine machine and starting from the initial
machine state of

⟨(λx.(λy.(λx.y 30) 20) (λz.x)) 10 | ε | done⟩
show the step-by-step transition sequence for calculating the final state of
the machine, which should have the form of either ⟨λz.M | Γ | done⟩ or
⟨n | Γ | done⟩ for some environment Γ.

(c) Compare the answer you get to both previous steps. Are they the same?
Should they be the same? Why or why not?

Recall that the local names in an expression can be eliminated by translating to
de Bruijn indexes like so:

i ::= 0 | 1 | 2 | . . .
M ::= var i | M M | λM

JxK = x

JM M ′K = JMK JM ′K
Jλx.MK = λ([0/x]JMK)

[i/x]x = var i

[i/x]y = y (if x ̸= y)

[i/x](M M ′) = ([i/x]M) ([i/x]M ′)

[i/x]λM = λ([i+ 1/x]M)

These nameless expression can be run inside of a de Bruijn machine that only
uses numeric positional offsets, rather than looking up variables by name:

Γ ::= ε | [Γ]M,Γ

Π ::= done | [Γ]M ; Π

⟨M M ′ | Γ | Π⟩ 7→ ⟨M | Γ | [Γ]M ′; Π⟩
⟨λM | Γ | [Γ′]M ′; Π⟩ 7→ ⟨M | [Γ′]M ′,Γ | Π⟩

⟨var i | Γ | Π⟩ 7→ ⟨M ′ | Γ′ | Π⟩ (if Γ at index i = [Γ′]M ′)

Notice how in this machine, both the environment Γ and the stack Π are just plain
arrays/lists of closures [Γ]M .

Extra Credit Exercise 3.

4 COMP 3010 — ORGANIZATION OF PROGRAMMING LANGUAGES

(a) Draw a syntax tree of the λ-calculus expression (λx.(λy.(λx.y 30) 20) (λz.x)) 10.
Then, draw an arrow from each leaf which references a variable to the λ
that introduces the variable it refers to. In other words, walk up the tree
from the reference leaf containing a variable like x and stop at the first λ
you encounter which introduces that variable (x) as a parameter; this is
the parameter the leaf refers to.

Next to each variable reference leaf, write down the number of λs that
were skipped between each reference to a variable and the λ-parameter it
points to. For example, if a variable reference leaf points to the nearest λ
up the tree (even if there are other nodes like application in the middle),
write a 0 next to it. If there is only one other λ node between a variable
leaf and the λ introducing a parameter of the same name as the variable,
write a 1. And so on.

(b) Show how to translate the λ-calculus expression (λx.(λy.(λx.y 30) 20) (λz.x)) 10
to its nameless de Bruijn form by following the definition of

J(λx.(λy.(λx.y 30) 20) (λz.x)) 10K

Note, in the base case where you get to a number n (in this case, n = 10
or 20 or 30), assume that JnK = n.

Hint: The index i you get at each var i in the translated expression
should correspond to the number of skipped λs you found in the syntax
tree from part (a). In other words, if you take your syntax tree from part
(a) and erase all the variable names, you should get a new nameless syntax
tree that corresponds to your answer to this question.

(c) Given that your answer to part (b) is the term M which no longer has any
variables on it, use the above rules for the de Bruijn machine and start from
the initial machine state ⟨M | ε | done⟩ to show the step-by-step transition
sequence for calculating the final state of the machine, which should have
the form of either ⟨λM | Γ | done or ⟨n | Γ | done for some environment
array Γ.

