
Effective Functional Programming
Correctness
Assignment 3

Red-Black Trees

Paul Downen

Ordered trees are an important data structure, since they let us represent
collections that can search for elements in sub-linear time; that is, without
checking every single element exhaustively. For example, consider the following
ordered binary tree where numbers larger than the one in the current node are
always stored to the right, and numbers smaller than the current node are always
stored to the left:

We can quickly confirm that 9 is not in this ordered tree by only checking the
right-most path: starting from the top node containing 5, move to 8 on the right
(because 9 > 5), then move again to the right (because 9 > 8) and end the search
at the right-most terminal leaf. If there was a 9 in the tree, it would be to the
right of the 8 because the binary tree is ordered. The nodes containing 2 and 7
do not even need to be checked at all, because we know they must be smaller
than 5 and 8, respectively, which means they could not possibly lead to a node
containing the value 9.

However, balancing is an important property to make sure that ordered trees
do actually provide sub-linear search. For example, the following is also a valid
ordered tree,

1



but it is no better than a linear list. The search for 9 in this tree is forced to visit
every single node because it is unbalanced: some paths are very short (like the
left-most path from 2, which immediately stops after one step) whereas some
paths are very long (like the right-most path from 2 to 8, which has four steps).

One way of maintaining balance is to use a red-black tree: an ordinary binary
tree but where every node is colored either red or black. Written graphically, a
red-black tree comes in three different forms: a leaf, a black node, or a red node.

In addition to marking nodes with a color, a proper red-black tree also meets
the following properties:

0. Ordered: The values of the nodes are in strict ascending order with respect
to a left-to-right depth-first search. In other words, everything in the left
sub-tree of a node is strictly less than the node value, and everything in
the right sub-tree of a node is strictly greater than the node value.

1. Black Root: The root of every complete tree must be black. A leaf is
considered black. Only sub-trees can be red.

2. No Red Chains: The left and right sub-trees of a red node must be black.

3. Equal Paths: The number of black nodes contained in every path from the
root to a leaf (including the root and leaf) must be equal.

2



Properties 1, 2, and 3 together force proper red-black trees to be balanced, since
only balanced trees can follow these coloring criteria. For example, the balanced
tree above has the following proper coloring (among others):

But the unbalanced tree cannot be colored properly. For example, here are two
attempts that violate criteria 3 (Equal Paths) and 2 (red chains) respectively:

Red-black trees can be represented in Haskell with the following data types:

data Color = R | B
deriving (Eq, Show)

data RBTree a = L | N Color (RBTree a) a (RBTree a)
deriving (Show)

3



The constructors of Color and RBTree a effectively correspond to the three
forms of red-black trees: leaves are built by L, black nodes by N B, and red nodes
by N R. The color of a red-black tree is the color of its root node (which is built
by either L or N).

The main operations of red-black trees are the functions

find :: Ord a => a -> RBTree a -> Maybe a
insert :: Ord a => a -> RBTree a -> RBTree a

find looks to see if a given element is in a red-black tree, returning Nothing if
it is not there, and insert adds a new element to a red-black tree, returning the
updated tree with the element in it. Because red-black trees are ordered, both
find and insert only need to trace a single path from the root of the tree to
a leaf to do their job. And because the other red-black tree properties (namely
(2) No Red Chains and (3) Equal Paths) force trees to be balanced, any path
through the tree has only log(n) steps. As a result, both find and insert cost
O(log(n)) time, where n is the number of elements in the tree they operate on.

The challenge of maintaining balanced trees is that insert might make a tree
out of balance by adding one too many nodes along a path. Assuming, insert
always adds a new Red Node, this can be seen in red-black trees as a violation of
the No Red Chain property. Because of this, insert needs to rebalance the nodes
along the path it takes, according to this balancing diagram that transforms bad
red-black trees into good ones:

The subtle properties and balancing act make red-black trees a difficult data
structure to implement correctly, since it is easy to accidentally break one of
properties needed to ensure that find and insert are efficient. Because it is

4



not easy to see if the code implementing red-black trees is correct, they are a
great candidate for a good testing suite. The red-black tree properties form hard
invariants that must be maintained by every insert, and we need to know if
finding an element in a tree never accidentally misses the answer by taking the
wrong path.

A complete implementation of red-black trees, along with the find and
insert functions, has been given to you in the template for this assignment.
Your job is to ensure that it is correct. You will create an automated test suite
for checking that insert builds good red-black trees, and to work towards a
proof that find does the same thing as a complete, thorough search.

1 Testing Red-Black Properties (50 points)
In order to confirm that the implementation of red-black trees you were given
is correct, you will need to generate many test cases to check that all the red-
black tree properties are followed. This can be done automatically using the
QuickCheck1 library, by showing how to generate arbitrary red-black trees. A
fully-automated test suit for checking correctness of the provided implementation
of red-black trees using the hspec2 framework.

The code for generating arbitrary trees as well as the main testing script
is already provided for you in the template of this assignment in test/Spec.hs.
You are responsible for writing definitions of the properties that will be checked,
and can give in your answers to the following Exercises in this section by filling in
the blanks in test/Spec.hs. To check your test suite, you can run the command

> stack test

in the project directory, which will run the main testing script found in test/Spec.hs
and print the results.

Exercise 1.1 (5 points). Implement a test with the type signature

findAfterInsert :: Int -> RBTree Int -> Bool

findAfterInsert is a function which takes any Int xand valid red-black tree t
(of type RBTree Int) containing Ints, and checks that x can be found in the tree
made by inserting x into t. In other words, the output of findAfterInsert x t
should be:

• True if find x (insert x t) is equal to Just x, and

• False otherwise. End Exercise 1.1

Exercise 1.2 (10 points). The provided RedBlackTree module defines functions

fromList :: Ord a => [a] -> RBTree a
toList :: RBTree a -> [a]

1https://hackage.haskell.org/package/QuickCheck
2https://hackage.haskell.org/package/hspec

5

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/hspec


for converting between trees and lists. Implement a test with the type signature

roundTripSort :: [Int] -> Bool

roundTripSort is a function which takes any list of Ints, and checks that a
round trip from [Int] to RBTree a (by calling fromList) and back to [Int]
contains all the unique elements as the original list in ascending order. In other
words, the output of roundTripSort xs should be:

• True if toList (fromList xs) is equal to the list obtained by sorting and
removing duplicates from xs, and

• False otherwise. End Exercise 1.2

Hint 1.1. The Data.List module provides the two functions

sort :: Ord a => [a] -> [a]
nub :: Eq a => [a] -> [a]

sort sorts a list and nub removes duplicate elements from a list. End Hint 1.1

Exercise 1.3 (15 points). Implement tests with these type signatures

ordered :: RBTree Int -> Bool
blackRoot :: RBTree Int -> Bool
noRedChains :: RBTree Int -> Bool

that encode properties 0–2 of red-black trees as Haskell functions returning a
boolean value: a True is returned if the given tree satisfies that property and a
False is returned if the tree violates that property.

0. ordered t returns True only when the list of elements in t, as given by
toList t, are in order.
Hint 1.2. Remember that sort from Data.List sorts a list. You can
check if a list xs is in order by checking that xs is equal to sort xs.

End Hint 1.2

1. blackRoot t returns True only when the root node of is black.
Hint 1.3. Remember that a leaf L counts as black, and a node built by N
has the color contained in the first parameter of N. Since you only need
to check the color of the root, the blackRoot function does not need to
recurse or check any sub-trees. End Hint 1.3

2. noRedChains t returns True only when there is never any two red nodes in
a row. In other words, if t contains a node of the shape N R left x right
anywhere, then it must be the case that both its left and right sub-trees
have a blackRoot.
Hint 1.4. noRedChains t needs to check the property for every single node
within t. So noRedChains t needs to recursively check the sub-trees of t,
unlike blackRoot t that only checks a property of the top-most node of
t. End Hint 1.4

6



End Exercise 1.3

Exercise 1.4 (20 points). The last property of red-black trees is the most
complex, and involves comparing a particular count over all possible paths you
can take from the root to the leaf of a tree. Generating this list of paths has
already been defined for you in the RedBlackTree module in the template, which
includes the function

type Path a = [(Color, a)]

paths :: RBTree a -> [Path a]

The result of paths t contains a list of paths. Each path is itself a list contain-
ing the Color and value contained within each non-leaf node visited along that
path. The only path possible starting from an empty leaf L is the empty path
[]. The two possible paths starting from the single-node tree (N B L 1 L) are
[[(B,1)],[(B,1)]]: both start at the root Node with color B and value 1, and can
continue down to the left or right Leaf. The two-node tree (N B L 1 (N R L 2 L))
has three paths [[(B,1)],[(B,1),(R,2)],[(B,1),(R,2)]], and so on.

To finish implementing a test for the Equal Paths property, break it down
into smaller parts. First, implement helper functions with the type signatures

countBlackNodes :: Path a -> Int
pathCounts :: RBTree Int -> [Int]

countBlackNodes takes a single path, and should count only the black
nodes visited along that path. So countBlackNodes [] = 1, because an empty
path always ends at a leaf, which counts as a black node. Another example is
countBlackNodes [(B,1)] = 2, which counts 1 for the first Black non-leaf Node,
and another 1 for the final Leaf. In addition, countBlackNodes [(B,1),(R,2)] = 2
as well, because the Red Node visited in the second step isn’t counted. In general,
countBlackNodes ((c, x) : path) should add 1 to the count of path when
c is Black, and otherwise just be the same count as path when c is Red.

pathCounts takes a red-black tree t, calculates all the paths starting from
t, and applies countBlackNodes to each one of those paths, collecting the list
of counts taken for each individual path. As examples,

pathCounts L = [1]
pathCounts (N B L 1 L) = [2,2]
pathCounts (N B L 1 (N R L 2 L)) = [2,2,2]

Hint 1.5. Recall from the lectures that you can use the map function or a list
comprehension to apply a function to every element of a list. End Hint 1.5

Using the above helper functions, implement a test with the type signature

equalPaths :: RBTree Int -> Bool

that encodes property 3 (Equal Paths) of red-black trees as a Haskell function
returning True for a tree only when it satisfies property 3. More specifically,
equalPaths t should:

7



1. Calculate the list of all pathCounts t for the given tree.

2. Check if every number in the list from step 1 is equal, returning True if
they are all equal to the same number n, and False otherwise.
Hint 1.6. Since even the empty tree L has one path in it, you know
that pathCounts t will never be an empty list. So you can check that
every element of pathCounts t is equal to the head of pathCounts t.
The all :: (a -> Bool) -> [a] -> Bool function from the standard li-
brary checks if every element in a list satisfies some Boolean test. End Hint 1.6

End Exercise 1.4

2 Proving Correctness (25 points, 45 extra credit)
The purpose behind a red-black tree is to more efficiently implement a search (via
the above find function) that scales logarithmically rather than linearly with
the number of elements to search through. For example, doubling the number of
elements in the red-black tree only adds a constant (some fixed number) of steps
to find, since only a single path from the root of the tree to a leaf is searched,
and the tree only grows (approximately) one more level deep after doubling.

By analogy, the red-black tree find function should be equivalent to a linear
search through a sequential list, just faster. We can define the linear search
function as

search :: Eq a => a -> [a] -> Maybe a
search x [] = Nothing
search x (y:ys)

| x == y = Just y
| otherwise = search x ys

It is relatively easier to see that the linear search function is correct because
it exhaustively checks every element: if the given list contains an element equal
to the given value, then search will return that element, and otherwise search
will return nothing. In contrast, it is harder to see that the binary find function
is correct, because it skips over many elements without even checking them. You
can prove that the efficient find function is correct by proving that it is equal
to the simpler search specification function. Proving, which considers every
possible argument to a function, even if there are infinitely many options, is
much more thorough than testing, which only checks a relatively small, finite
number of possible arguments.

The following exercises in this section ask you to employ equational reasoning
to prove that two expressions are equal to one another. Show your work by doing
a “pen-and-paper” style calculation by hand, chaining equations together similar
to solving an algebra problem, and include your work in a (plain text, pdf, word,
or hand-written) document. The template for this assignment contains an outline
for this section in test/Proofs.md, where you can fill in your answers to each

8



of the following sections. Only Exercises 2.1 and 2.3 are mandatory for this
assignment. You can optionally do the Bonus Exercises 2.2 and 2.4 for extra
credit.

Exercise 2.1 (15 points). Using equational reasoning, prove that, if x == y is
False for each y in the list ys, then

search x ys = Nothing

End Exercise 2.1

Hint 2.1. Try to prove this property by induction on the structure of the list ys.
To do so, answer these two questions:

1. What happens when ys is the empty list []? In other words, manually
calculate for yourself the result of the function call search x [], according
to the definition of search, and show it is equal to Nothing regardless of
the value of x.

2. Assuming that search x ys' = Nothing, what happens when ys is the
non-empty list built by y:ys'? In other words, use equational reasoning
to calculate the result of the function call search x (y:ys') according
to the definition of search and the assumption that x == y is False, and
show it is equal to Nothing. In one of the steps, you will need to use
the assumption that search y ys' = Nothing (known as the inductive
hypothesis) to finish the equation. End Hint 2.1

Bonus Exercise 2.2 (20 extra credit). Use equational reasoning to prove the
following two properties:

1. If x == z is False for each z in the list zs, then

search x (zs ++ ys) = search x ys

2. If x == y is False for each y in the list ys, then

search x (zs ++ ys) = search x zs

End Bonus 2.2

Hint 2.2. The built-in append function (++) has the recursive definition

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(z:zs) ++ ys = z : (zs ++ ys)

Since (++) recursively takes apart its left (first) argument, it may be helpful to
start the proof of Bonus Exercise 2.2 by doing an induction on the structure of
the list zs (the left argument to (++) in both equations). For the purposes of
this exercise, you may assume that (++) is associative, meaning that for all list
values xs, ys, zs :: [a], you may assume that

9



(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

This means that it doesn’t matter how you parenthesize a chain of (++) opera-
tions, as all groupings all equal. By default, an unparenthesized chain of (++)
is grouped to the right, so that

ws ++ xs ++ ys ++ zs = ws ++ (xs ++ (ys ++ zs))

End Hint 2.2

Exercise 2.3 (10 points). Use equational reasoning to prove that, if x == y is
True and x == z is False for each z in zs, then

search x (zs ++ ([y] ++ ys)) = Just y

End Exercise 2.3

Hint 2.3. You do not need to use induction to prove this property. Instead,
you can apply one of the properties from Bonus Exercise 2.2 (whether or not
you completed that optional exercise) to calculate the result directly. Which
of the assumptions in the two properties of Bonus Exercise 2.2 matches the
assumptions that you have here? End Hint 2.3

Bonus Exercise 2.4 (25 extra credit). Use equational reasoning to prove that,
if t is a well-formed red-black tree (meaning it satisfies properties 0–3 described
in the introduction to red-black trees), then

search x (toList t) = find x t

End Bonus 2.4

Hint 2.4. The ordered property of red-black trees (property 0) will be important
for proving Bonus Exercise 2.4. You may also find some of properties proved above
in Exercises 2.1 and 2.3 and Bonus Exercise 2.2 useful when doing equational
reasoning in Bonus Exercise 2.4. End Hint 2.4

3 Bonus: Trees as Maps (40 extra credit)
We can use the Indexed i a type, and its associated Eq and Ord instances,
from Assignment 1 to model maps from keys (indexes) to values (items) using
red-black trees:

type RBMap i a = RBTree (Indexed i (Maybe a))

Bonus Exercise 3.1 (15 extra credit). Implement the function

deleteAt :: Ord i => i -> RBMap i a -> RBMap i a

10



which removes an element stored at an index i from the given tree by setting
the element at that index to Noting. If it turns out there is no element in the
tree stored at the given index, then deleteAt should return the same tree it was
given. Like find and insert found in the RedBlackTree module provided in
the template for this assignment, , deleteAt should not search the entire tree,
but only check the single relevant path of the tree based on the order of the
indexes. End Bonus 3.1

Bonus Exercise 3.2 (10 extra credit). Implement the following wrapper func-
tions

findAt :: Ord i => i -> RBMap i a -> Maybe a
insertAt :: Ord i => i -> a -> RBMap i a -> RBMap i a

using find and insert. Find should return the element stored at the given
index (or Nothing if there is no element stored at the index) and insertAt
should insert a new index-value mapping into the given RBMap i a, overriding
the existing mapping if one was already present. End Bonus 3.2

Bonus Exercise 3.3 (15 extra credit). Implement the functions

toAssoc :: RBMap i a -> [Indexed i a]
fromAssoc :: Ord i => [Indexed i a] -> RBMap i a

that convert between an RBMap i a and an association list [Indexed i a].
These two functions are similar to toList and fromList, except that toAssoc
should ignore any index mapped to Nothing in RBMap i a. End Bonus 3.3

4 Bonus: Testing Map Properties (40 extra credit)
Bonus Exercise 4.1 (5 extra credit). Modify the properties defined in section 1
to operate over RBMap Int Int instead of RBTree Int by changing their type
signature. End Bonus 4.1

Bonus Exercise 4.2 (10 points). Test that the properties defined in Exer-
cises 1.3 and 1.4 still hold after an Int is inserted into the tree with insertAt, and
add them to your main test suit. For example, test \x -> inOrder . insertAt x,
and so on for all red-black properties 0–3. End Bonus 4.2

Bonus Exercise 4.3 (10 extra credit). Similar to Bonus Exercise 4.2, write
properties testing the red-black properties are maintained after deleteing an
element from a RBMap, and add them to your main test suit. End Bonus 4.3

Bonus Exercise 4.4 (15 extra credit). Implement the additional properties
for the map operations and add them to your main test suit:

findAfterInsertAt :: Int -> Int -> RBMap Int Int -> Bool
findAfterDeleteAt :: Int -> RBMap Int Int -> Bool
deleteAfterInsert :: Int -> Int -> RBMap Int Int -> Bool

11



findAfterInsertAt should check that findAt i (insertAt i x t) is Just x
for any index i, element x, and tree t.

findAfterDeleteAt should check that findAt i (deleteAt i t) is Nothing
for any index i and tree t.

deleteAfterInsert should test that

toAssoc (deleteAt i (insertAt i x t))

is the same as

toAssoc (deleteAt i t)

for any index i and tree t. The reason why the call to toAssoc is necessary
is to ignore the internal differences in two RBMaps that do not matter (like the
remnants of a deleted index). End Bonus 4.4

12


	Testing Red-Black Properties (50 points)
	Proving Correctness (25 points, 45 extra credit)
	Bonus: Trees as Maps (40 extra credit)
	Bonus: Testing Map Properties (40 extra credit)

